

The Area Between Two Curves

Introduction

• Intuitive Definition

• Precise Definition

The Area Between Two Curves

If f and g are continuous and $f(x) \ge g(x)$ over the interval [a, b], then the **area bounded** by y = f(x) and y = g(x) and the lines x = a, x = b is given exactly by

$$A = \int_{a}^{b} \left(f(x) - g(x) \right) \, dx$$

Example 1.

Find the area of the region bounded above by $y = e^x$, bounded below by y = x, and bounded on the sides by x = 0 and x = 1.

Example 2.

Find the area bounded by the graphs of

$$f(x) = \frac{1}{2}x + 3$$
 $g(x) = -x^2 + 1$ $x = -2$ $x = 1.$

Example 3.

Find the area of the region enclosed by the parabolas $y = x^2$ and $y = 2x - x^2$.

What can happen at intersection points?

The Area Between Two Curves

If f and g are continuous over the interval [a, b], then the **area bounded** by y = f(x) and y = g(x) and the lines x = a, x = b is given exactly by

$$A = \int_{a}^{b} |f(x) - g(x)| dx$$

How to Compute the Area of the Region Between Two Curves

- 1. Locate any intersection points.
- 2. Identify the Top and Bottom Functions on each sub-interval.
- 3. Sketch the region.
- 4. Setup the integral and evaluate.

Example 4.

Find the area bounded by the graphs of

$$f(x) = x^{2} - x$$
 $g(x) = 2x$ for $-2 \le x \le 3$

Example 5.

Find the area of the region bounded by the curves $y = \sin x$, $y = \cos x$, x = 0, and $x = \frac{\pi}{2}$.

What if the top and bottom curves are given by the same equation?

Example 6.

Find the area of the region bounded by the line y = x - 1 and the parabola $y^2 = 2x + 6$.